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Beautiful Gauge Field Equations in Clifforms1
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By combining the tetrads of unholonomic frames of spacetime with the Dirac
matrices to a one-form g, we can reformulate not only the Dirac equation, but
also the Einstein equations and supergravity in a very concise form. These
“Clifforms” also shed some light on the chiral decomposition à la Ashtekar, the
role of the axion as a dynamical degree of freedom dual to the torsion of the
Einstein–Cartan theory, and the role of the Seiberg–Witten equation for S-duality.

1. INTRODUCTION

This paper was inspired by the beautiful paper of Freedman (1993), in
which the main ideas and principles of the gauge approach to fundamental
physics were highlighted. The formal beauty of these equations is intended
here to be enhanced by applying Clifford algebra-valued differential forms,
or Clifforms for short. These are based on Cartan’s exterior calculus in curved
spacetime as well as on the Clifford algebra à la Dirac and allow for a rather
compact and illuminating notation.

After the advent of the Dirac equation, some years later in 1932, Schröd-
inger (1932) devised already such a Clifford algebra version of Riemannian
geometry. With respect to the matter couplings, these Clifforms allow us to
describe rather naturally the couplings of gravity to matter spinor fields, i.e.,
the Dirac field with spin 1/2 and the Rarita–Schwinger field with spin 3/2
(Mielke et al., 1996a).

The Einstein–Cartan theory coupled to Dirac spinors as well as its
extension to supergravity (SUGRA) can be completely expressed in Clifforms.
The chiral reformulation à la Ashtekar (1986, 1991) is presented here from
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the more fundamental point of view of the generating function (Mielke,
1990b) constructed from the translational Chern–Simons term.

For the Dirac equation, we find an effective nonlinearity induced by
torsion, resembling the Heisenberg nonlinear spinor equation. As a new
development, we contrast this four-fermion-type interaction with a dynamical
axion coupling resulting from strings.

Moreover, in the case of Yang–Mills fields coupled to Weyl spinors,
we propose here to proceed from a Gordon-decomposed spinor Lagrangian
with a (self-dual) interaction to the polarization current. Minimizing solutions
turn out to necessarily satisfy the Seiberg–Witten equations (1994). Their
role for the index theorem and for the 4D Donaldson invariants has recently
been reviewed by Atiyah (1984, 1998).

2. THE CLIFFORD BASIS OF SPACETIME GEOMETRY

Noninertial frames of spacetime will be described by means of a very
concise formalism employing Clifford algebra-valued exterior differential
forms. We will proceed from a representation (Bjorken and Drell, 1964;
Kaku, 1993) by the Dirac matrices ga obeying

gagb 1 gbga 5 2oab14 (1)

where a, b 5 0̂, 1̂, 2̂, 3̂ denote the (anholonomic) indices of the frame field
ea, which is assumed to be orthonormal. The signature of the Minkowski
metric oab 5 ei

aej
bgij of the frame bundle is (oab) 5 diag(1, 21, 21, 21).

We choose the 16 matrices {14, ga, sab g5, g5ga}, where sab :5 1–2 i(gagb 2
gbga) are the Lorentz generators and g5 5 2ig0̂g1̂g2̂g3̂, as a basis of the
Clifford algebra in four dimensions. With respect to the trace, the elements
of the Clifford algebra are normalized by Tr(gagb) 5 4 oab and Tr(sabsgd)
5 8dg

[add
b], where [ab] 5 1–2 (ab 2 ba) denotes the antisymmetrization of

indices. In n 5 4 dimensions, they constitute a minimal representation of the
corresponding Clifford algebra. An extension to n dimensions was discussed
by Brauer and Weyl (1935) as well as Sáenz and Wigner (1967).

The Lorentz generators sab and the totally antisymmetric product g5 of
Dirac matrices fulfill

[ga, sbg] 5 2i(oabgg 2 oaggb),

{ga, sbg} 5 2ig[agbgg] 5 2habgdgdg5 (2)

{g5, ga} 5 0, g5g5 5 1 14 (3)

Following Schrödinger (1932) (cf. Mielke, 1981a; Mielke, 1987; Hehl
et al., 1991b), the constant ga matrices can be converted into the Clifford
algebra-valued one-form
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g :5 gaqa, where qa :5 ei
a dxi is a basis for the coframes (4)

For Clifford comodules, see Oziewicz (1998).
The contraction operator acting on p-forms from the left is defined as

ǧ :5 gbeb 5 gbei
b­i with ǧg 5 4 ? 14 (5)

It generalizes the usual Feynman “dagger” convention A; :5 gaea  A of
particle physics (Bjorken and Drell, 1964) for one-forms A.

The frame could be regarded as a truncated tangent vector of a Clifford
manifold C for which the multivector X 5 xaga 1 xbgsbg 1 xmnrg[mgngr] 1
. . . represents the hierachy of point, loop, 2-loop (brane), etc., histories in a
new infinite-dimensional spacetime approach (Castro, 2000) to quantum
gravity.

2.1. Dual Forms and Chiral Transformations

Here, we restrict ourselves to a topologically trivial frame bundle where
h 5 (1/4!)habgd qa ∧ qb ∧ qg ∧ qd is the volume four-form with the
normalization h0̂1̂2̂3̂ 5 11, ha :5 ea  h 5 *qa is the coframe “density,”
and * is the Hodge dual. On an 4-dimensional manifold with metric index
s, the Hodge dual of p-forms is almost involutive: **a 5 (21)p(42p)1sa.
For spacetimes where s 5 1 holds, it induces an almost complex structure
(Brans, 1975).

Our Hodge dual * of exterior forms is defined such that the normalization
*(qa ∧ qb ∧ qg ∧ qd ) 5 habgd holds. In order to complete the h-basis for
forms, we define hab :5 eb  ha, habg :5 eg  hab, habgd :5 ed  habg with
the aid of the interior product .

The Hodge dual of the basis Clifform leads to the associated three-form

*g 5 gaha 5
i
6

g5g ∧ g ∧ g (6)

whereas for the Lie (or right) s,
ab :5 1–2 sgdhabgd 5 ig5sab, we find the associ-

ated two-forms

s :5
1
2

sabqa ∧ qb 5
i
2

g ∧ g, *s 5
1
2

sabhab 5: s, 5 ig5s (7)

In four dimensions, the Hodge dual applied to two-forms is conformally
invariant (Atiyah et al., 1978) under the Weyl rescaling g → g̃ 5 ewg, where
w is the the dilaton field. Conversely, an initially metric-free involutive star
operation # on arbitrary two-forms allows one to reconstruct (Dray et al.,
1989; Harnett, 1991) a spacetime metric h which is conformally related to g.

Note that in orthonormal frames the Hodge dual * and the Lie dual ,

are identical operations for s (Mielke et al., 1996a). Moreover, this allows
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one to reconstruct the Hodge dual and therefore a conformal equivalence
class of spacetime metrics from the Lie dual as defined by Kähler (cf.
Trautman, 1999): For the metric-free two-form s, we can built the Lie
dual s, solely by multiplication with g5, which here is regarded as just an
anticommuting element of the Clifford algebra. This Lie dual is antiinvolutive:

s, :5 ig5s, s,, 5 i2g2
5s 5 2s (8)

Moreover, due to (2), we have the metric-free Clifform relation

[g, s,] 5 g ∧ ig5s 2 ig5s ∧ g 5 2ig5(g ∧ s 1 s ∧ g) 5 2g5g ∧ g ∧ g

(9)

Acoording to (6), we can identify this with 12i*g and therefore have recovered
the Hodge dual for the basis of Clifforms (Harnett, 1992). This allows us to
identify g5 with the the zero-form g5 :5 (i/4!)* (g ∧ g ∧ g ∧ g).

In a recent paper (Obukhov and Hehl, 1999) a related reconstruction
has been discussed on the basis of older work, but specialized to the Faraday
two-form F 5 dA. This is not compulsory, as we have just demonstrated;
also, it could be applied, for example, to the Kalb–Ramond two-form B
arising in the low-energy limit of strings. Moreover, in view of quantum-
field-theoretic problems such as conformal anomalies (Deser and Schwimmer,
1993) and the perturbative nonrenormalizability (’t Hooft, 1975) of gravita-
tionally coupled fields, we cannot subscribe to a physical interpretation of
the metric as arising from a Maxwell-like classical “æther.”

For Minkowski signature, the Hodge dual satisfies ** 5 21, therefore
often i* is used in field theory in order to have an involutive duality operator.
We will encounter also the self- or anti-self-dual combination

s6 :5 (s 6 i*s)/2 5 1–2 (1 7 g5)s with i*s6 5 6s6 (10)

which is originally due to Debever (1964) and Brans (1975), but at times is
referred to as the Plebaňski (1975, 1977) two-form. Our Clifford representa-
tion involves explicitly the chirality projector P6 5 1–2 (1 6 g5) obeying P6P6

5 P6.
This decomposition is invariant under the chiral transformation

g → gu 5 eig5uge2ig5u (11)

of the coframe, where u denotes the so-called ‘theta angle’ (’t Hooft, 1991).

2.2. Riemann–Cartan spacetime: Clifford Algebra-Valued Torsion
and Curvature

The Riemann–Cartan (RC) geometry (Cartan, 1924) as a basis for the
Einstein–Cartan (EC) theory of gravity has been reviewed by Hehl et al.
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(1976). In terms of the Clifford algebra-valued connection G :5 1–4 iGabsab,
the SOo(1, 3) > SL(2, C )-covariant exterior derivative D 5 d 1 [G, ] employs
the algebra-valued form commutator [C, F] :5 C ∧ F 2 (21)pqF ∧ C.
Differentiation of the basic variables leads to the Clifford algebra-valued
torsion and curvature two-forms, respectively:

Q :5 Dg 5 Taga, V :5 dG 1 G ∧ G 5
i
4

Rabsab (12)

This compact Clifform formula for the curvature is due to Schrödinger (1932),
who thereby anticipated the concept of gauge curvature developed much later
by Yang and Mills (1954).

In this Clifform approach, the torsion two-form can be irreducibly
decomposed into the trace part (2)Q :5 1–3 g ∧ T, the axial torsion (3)Q :5 2
1–3 *(g ∧ A), and the tensor torsion (1)Q :5 Q 2 (2)Q 2 (3)Q, where the one-
forms of the trace and axial vector torsion, respectively, are defined by

T :5 1–4 Tr(ǧ  Q) 5 ea  Ta, A :5 1–4 *Tr(g ∧ Q) 5 *(qa ∧ Ta) (13)

Under a Weyl rescaling, the axial torsion remains invariant, i.e., Ã 5 A,
whereas it picks up a gradient term under a chiral transformation:

T̃ 5 T 2 3dq, Au 5 A 2 idu (14)

In RC spacetime, the translational and Lorentz-rotational Chern–Simons
terms read

CTT :5
1

8l2 Tr(g ∧ Q) 5 2
1

2l2 *A,

CRR :5 2Tr1G ∧ V 2
1
3

G ∧ G ∧ G2 (15)

where a fundamental length l is introduced for dimensional reasons. The
Clifford algebra approach has the advantage that we can employ the trace in
the definition (15), whereas the usual translational generators Pa commute
and do not have a nondegenerate Cartan–Killing metric.

The Ricci identity reads

DDC 5 [V , C] (16)

whereas the first and second Bianchi identities adopt in RC geometry the form

DQ [ [V , g], DV [ 0 (17)

respectively (Hehl et al., 1991a).
The Einstein three-form can be defined by
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E :5 Eaga :5 1–2 Rmn ∧ hmnlgl 5 2ig5(V ∧ g 1 g ∧ V) 5 i[g, g5V]

(18)

In view of the contracted Bianchi identities

D[g, Q] [ 2i[s, V], D[g, V] [ [Q, V], DE [ i[Q, g5V] (19)

the automatic conservation of the Einstein three-form holds only for vanishing
torsion, i.e., in Einstein’s GR with Q 5 0.

The Lie dual of Lorentz algebra-valued forms such as contortion and
curvature is defined by

K, :5 habg ∧ Kbgga, V, :5
i
8

Rabhabgdsgd 5 2
1
4

Rabg5sab 5 ig5V

(20)

and satisfies DV, [ 0.
We will also employ the self- or anti-self-dual torsion and curvature

two-forms

Q6 :5 1–2 (Q 6 *Q), V6 :5 1–2 (V 6 *V), V(6) :5 1–2 (V 6 V*)

(21)

in terms of the Hodge or Lie dual, respectively.

3. YANG–MILLS EQUATION

The prototype gauge theory is that of Yang and Mills formulated origi-
nally (Yang and Mills, 1954; Mills, 1989) for the Lie group G 5 SU(2).
Quite generally (Mielke, 1987), for a Lie-algebra-valued one-form A :5
AJ

i lJ dxi of a non-Abelian gauge theory with Lie generators lJ , the Yang–Mills
field strength and its self- and anti-self-dual parts are given by

F :5 dA 1 A ∧ A, F6 :5 1–2 (F 6 i*F ) (22)

The corresponding Chern–Simons term

C :5 Tr(A ∧ F 2 1–3 A ∧ A ∧ A), dC 5 Tr(F ∧ F ) (23)

of a non-Abelian gauge theory yields the Pontrjagin four-form dC as boundary
term which is important for topological reasons.

From the Yang–Mills Lagrangian with topological term
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LYM :5 2
1
2

Tr(F ∧ *F ) 1
u
2

dC

5
u 2 i

2
Tr(F + ∧ F +) 1

u 1 i
2

Tr(F 2 ∧ F 2) (24)

we find the Yang–Mills eguations

D*F 5 J, DF [ 0 (25)

In the Abelian case, i.e., Maxwell’s theory with G 5 U(1), the covariant
derivative D :5 d 1 A∧ reduces to exterior derivatives, as F 5 dA, e.g.,
also in RC spacetime or more general geometries (Hehl et al., 1995).

3.1 CP Violation?

In contrast to the two-spinor approach (Plebański, 1975, 1977), our
Clifform formulation embodies not only the connected component SOo (1,
3) of the Lorentz group, but manifestly also the operators of reflections of
the full Lorentz group, including parity P, an (antiunitary) time reflection T,
and the total reflection J. Einstein’s theory is invariant under all reflections;
after coupling it to Maxwell’s theory of electromagnetism, it is also CPT
invariant, where C denotes the charge conjugation. From the neutral kaon
system, the tightest bound on CPT violation is now 2 3 10218.

On the other hand, for gravitational interactions, it is not known experi-
mentally if all reflections are respected or if there exist, for instance, only
right- (or left-) handed gravitons (Mielke et al., 1999). In any case, the
occurrence of the gravitational boundary terms dCRR and dCTT in the action
would violate parity P and, depending on the value of the theta angle, also
CP, similarly as the topological term dC 5 F ∧ F in Table I.

4. DIRAC EQUATION

A Dirac field is a bispinor-valued zero-form c for which c :5 c†g0

denotes the Dirac adjoint and Dc :5 dc 1 G ∧ c is the exterior covariant

Table I. Clifford Representation of Discrete Operators

Pontrjagin termDiscrete
symmetry Operator F ∧ F iF ∧ F

Parity P 5 g0̂ 21 21
Time reversal T 5 ig1̂g3̂ 21 11
Charge conjugation C 5 ig2̂g0̂ 11 21
CP CP 5 ig2̂ 21 11
CPT CPT 5 g1̂g2̂g3̂ 11 11
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derivative. The Dirac Lagrangian is given by the manifestly Hermitian
four-form

LD 5 L(g, c, Dc) 5
i
2

{c*g ∧ Dc 1 Dc ∧ *gc} 1 mcch (26)

Since LD 5 LD 5 L†
D even in an unholonomic frame, it provides us automati-

cally with the Hermitian charge current j 5 ec*gc. For the mass term, we
henceforth will use the short-hand notation *m 5 mh.

The Dirac equation and its adjoint are obtained by varying LD indepen-
dently with respect to c and c:

i*g ∧ Dc 1 *mc 2
i
2

(D*g)c 5 0

iDc ∧ *g 1 *mc 1
i
2

cD*g 5 0 (27)

If we use the properties of the Hodge dual, the term D*g 5 *g ∧ (ebTb)
turns out to be proportional to the vector torsion one-form T :5 ebTb.
Consequently, the Dirac equation adopts the equivalent form

i*g ∧ 1D 1
i
4

mg 2
1
2

T2c 5 0 (28)

In view of LD > 0 ‘on shell’, the canonical energy-momentum three-form
of the Dirac field reads

Sa > i
2

{c*g ∧ Dac 2 Dac ∧ *gc}, Da :5 eaD (29)

The spin current of the Dirac field is given by the Hermitian three-form

t :5
i
4

sab ­LD

­Gab 5
i
4

sabtab

5
i

32
c (*gsab 1 sab*g)csab 5

1
8

g5sgdcg5gdchg (30)

(Mielke, 1987, Eq. (4.2.13)). This implies that the components tabg :5 eg*tab

5 t[abg] of the spin current are totally antisymmetric.

4.1. Nonlinear Heisenberg Spinor Equation versus Dynamical
Axion Coupling

In order to separate out in the Dirac equation the purely Riemannian
piece from torsion terms, we decompose the Riemann–Cartan connection
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G 5 G{} 2 K into the Riemannian (or Christoffel) connection G{} and the
contortion one-form K. By inserting this decomposition into Eq. (26), the
Dirac Lagrangian splits into a Riemannian and a spin-contortion piece (Hehl
et al., 1991b; Mielke et al., 1996a):

LD 5 L(g, c, D{}c) 2
i
2

c(*g ∧ K 2 K ∧ *g)c

5 L(g, c, D{}c) 2
1
4

A ∧ i5 (31)

where j5 :5 c ∧ g5*gc is the familiar axial current of Dirac fields.
The Dirac equation obtained by varying the decomposed Lagrangian

(31) reads

i*g ∧ FD{} 1
i
4

mg 2
i
4

Ag5Gc 5 0 (32)

Note that for a Riemannian covariant derivative, we have D{}g 5 0. Hence,
in a Riemann–Cartan spacetime, a Dirac spinor only feels the axial torsion
one-form A :5 1–4 Tr(g̃*U) 5 1–4 Tr*(g ∧ U).

In the Einstein–Cartan theory, the torsion fulfills (38) (Hehl et al., 1976).
Since this implies A 5 2(l2/2)cg5gc, the axial torsion term can be removed
in (32), thus leading to the effectively nonlinear Dirac equation (Weyl, 1929;
Hehl and Datta, 1971; Mielke, 1981c)

i*g ∧ D{}c 1 *mc 1
l2

24
cg5gc ∧ s ∧ gc 5 0 (33)

in Riemannian spacetime.
However, it is well known that this nonlinear Heisenberg–Pauli–Weyl

equation with its c3-type self-interaction (Mielke, 1987) is perturbatively
nonrenormalizable (Fauser, 1998). Moreover, in quantum field theory (QFT),
there arises in RC spacetime the axial anomaly

^dj5& 5 2im^cg5c& 1
1

24p2 FTr(V{} ∧ V{}) 2
1
4

dA ∧ dAG (34)

This result (Mielke and Kreimer, 1998, 1999), which can easily be transferred
to the chiral current j6, is based on the Pauli–Villars regularization scheme.
It deviates from the heat kernel method (Obukhov, 1983; Obukhov et al.,
1997), which leads to partially divergent terms. Thus, only the term dA ∧
dA arises in the axial anomaly (Mielke and Kreimer; 1998, 1999), but not
the Nieh–Yan (NY) type term d*A 5 22l2dCTT as has been recently claimed
(Chandia and Zanelli, 1998). A consistent way to avoid (Kreimer and Mielke,
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2000) regularization problems is to impose the transversallity condition d*A 5
0 on the axial torsion, which just implies the vanishing of the NY term.

In effective string models (Duff, 1995), the theta angle of the topological
boundary term udC is liberated to a pseudoscalar, the Kalb–Ramond (KR)
axion. Then it may serve as a pseudoscalar potential for the axial torsion
one-form via A 5 idu, as can be inferred from the chiral transformation (14).

Besides the Chern–Simons terms and the dilaton coupling, it enters in
the Kalb–Ramond three-form H :5 ew/fw *du 2 C 2 l2CTT 2 C{}

RR. Since
dA 5 iddu [ 0 due to the Poincaré lemma, the Pontrjagin-type term in (34)
for the axial torsion gets removed. Anomaly cancellation for strings then
requires the Bianchi identity

dH 5 Tr(V{} ∧ V{} 2 F ∧ F ) (35)

Contrary to Heisenberg’s nonlinear four-fermion contact interaction, the axial
torsion part A ∧ *A 5 2du ∧ *du in the decomposition of the Einstein–Cartan
Lagrangian (36) has become dynamical (Duncan et al., 1992) due to the
anomaly. This makes quantum electrodynamics (QED) in RC spacetimes
equivalent to QED on a torsionless spacetime geometry coupled to the axion.
Since the geometry couples, via the topological Pontrjagin term, back to the
effective axion field equation (35), black holes may get restyled by “axion
hair” of odd parity.

5. EINSTEIN–CARTAN EQUATIONS

For the Einstein–Cartan (EC) theory, the Lagrangian reads in Clifforms

VEC 5
i

2l2 Tr(V ∧ *s) 5 2
1

2l2 Tr(V ∧ g5s) (36)

(Weyl, 1929; Trautman, 1973). Comparing with the Poincaré gauge approach
(Hehl et al., 1976, 1995), the translational field momentum HEC :5 2ga

­VEC/­Ta vanishes, whereas the Lorentz field momentum HEC :5 21–4 isab

­VEC/­Rab 5 2(1/4l2)g5s turns out to be proportional to the dual of the
“unit” curvature two-form.

Thus the first field equation reduces to

2E 5 i[g5V , g] 5 l2S (37)

where E is the Einstein three-form (18), S :5 ga(­L/­qa) 5 gaSa the
canonical energy-momentum current, and l2 the Planck length squared as
gravitational coupling constant in natural units where c 5 " 5 1. The second
field equation simplifies to Cartan’s algebraic relation between torsion
and spin,
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[U, g] 5 8il2g5t (38)

If we introduce the spin-energy potential two-form m 5 gama 5 1–4 g ∧ cgg5c
via t 5: 1–8 g5[m, g] or tab 5 q[a ∧ mb] in components, then we can resolve
(38) explicitly for the torsion U 5 1–2 i l2g5(m 2 1–4 g ∧ ğm).

The Hilbert–Einstein Lagrangian of GR is recovered for vanishing spin,
or via Belinfante symmetrization of the canonical energy-momentum tensor
S (Mielke et al., 1989; Hehl et al., 1999). The teleparallelism equivalent of
GR has been analyzed for knot states (Mielke, 1998, 1999) as solutions of
the Hamiltonian constraints (Mielke, 1992).

5.1. Chiral Gravity and Ashtekar Reformulation

The Ashtekar reformulation (1986, 1991) of GR can be obtained via a
canonical transformation induced by a boundary term which does not change
the local physics of the EC action. The exact form derived from the transla-
tional Chern–Simons term

CTT :5
1

8l2 Tr(g ∧ Q) (39)

which is also known as the Nieh–Yan (1982) term

dCTT 5
1

8l2 Tr(Q ∧ Q 2 g ∧ [V , g]) 5
1

8l2 Tr(Q ∧ Q 2 4iV ∧ s) (40)

is instrumental here and also in the chiral transition of the fermionic matter
Lagrangians. Since this term induces parity-violating pieces (Mielke et al.,
1999), one has to add to it the Lagrangian with the imaginary unit i as factor
in order to preserve the more stringent CP invariance of quantum field theory.
This boundary term represents the generating function (Mielke, 1990b, 1992)
of our canonical transformation to variables involving the self-dual or anti-
self-dual connection. Then the complex EC Lagrangian reads

V
(6)

EC :5 VEC 6 idCTT 5 6
1

2l2 TrH(1 7 g5)V ∧ s 1
i
4

Q ∧ QJ
5 6

1
l2 Tr1V6 ∧ s6 1

i
8

Q ∧ Q2 (41)

This leads to the following identifications of the new field momenta:

Q 5 6 il 2 H
(6)

EC, s6 :5 P7s 5 62l 2 H
(6)

EC, V6 5 P7V

Likewise, the transition to the chiral Dirac Lagrangian can be achieved
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by adding the translational Chern–Simons term as generating function, but
now evaluated “on shell” via (38). Then we see that is is proportional to the
axial current

CTT > 1–4 c g5*gc 5 1–4 j5 (42)

In this reformulation, a quadratic torsion term occurs in Eq. (41).
According to (42), for the Einstein–Cartan theory coupled to the Dirac field
(ECD), the induced torsion can be expressed solely in terms of the axial
torsion (3)Q (Hehl et al., 1991b). Therefore, we have in this case (1)Q 5 (2)Q
5 0. This immediately implies that the quadratic torsion term vanishes for
the Dirac field coupled to EC gravity due to the geometric identity

Q ∧ Q [ (1)Q ∧ (1)Q 1 2(2)Q ∧ (3)Q 5 0 (43)

The same happens for supergravity (coupled Einstein–Cartan–Rarita–
Schwinger fields) (see Mielke et al., 1996a, b; Mielke and Macı́as, 1999,
for details).

6. SIMPLE SUPERGRAVITY

The simplest consistent coupling of a Rarita–Schwinger (RS)-type spin-
3/2 field C to gravity is supergravity (Nieuwenhuizen, 1981; Freedman,
1993) with one supersymmetry generator, i.e., N 5 1.

The corresponding Hermitian Lagrangian four-form reads

LSugra 5 VEC 1 VRS 5 VEC 2 1–2 (C ∧ g5g ∧ DC 2 DC ∧ g5g ∧ C) (44)

where the Rarita–Schwinger field C :5 Caqa is a Majorana spinor-valued
one-form (Kaku, 1993).

With our Clifford definition (12) for the torsion, we find for the Rarita–
Schwinger equation (Urrutia and Vergara, 1991)

g ∧ DC 2 1–2 Q ∧ C 5 0 (45)

For the coupled Einstein–Cartan–Rarita–Schwinger Lagrangian, the first
field equation reads

ig5(V ∧ g 1 g ∧ V) 5
l2

2
ga(C ∧ g5gaDC 1 DC ∧ g5gaC) (46)

Because of the Cartan-type relation

Q 5 Taga 5 2
i
2

l2C ∧ gaCga (47)

we find
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Q ∧ C 5 2
i
2

l2C ∧ gaC ∧ gaC 5 0 (48)

as can be easily shown by means of a commutation of the one-form gaC
among itself, i.e., a Fierz reordering (Nieuwenhuizen, 1981). Thus, in sharp
contrast to the Dirac case, for the supergravity coupling of the Rarita–
Schwinger field, torsion is an auxiliary field which does not induce a nonlinear
term in (45).

Covariant exterior differentiation of the Rarita–Schwinger equation (45)
yields the integrability condition:

D(g ∧ DC 2 1–2 Q ∧ C) 5 Q ∧ DC 2 g ∧ DDC 2 1–2 [V , g] ∧ C

2 1–2 Q ∧ DC

5 1–2 Q ∧ DC 2 1–2 (V ∧ g 1 g ∧ V) ∧ C 5 0 (49)

It is a remarkable fact of supergravity also in higher dimensions (Bañados
et al., 1996) that the integrability condition (49) for the fermionic fields are
the bosonic equations (46) and (47). This implies the gauge invariance of
simple supergravity under invariance of LSugra under such local supersymmet-
ric transformations (SUSY) (Deser and Zumino, 1976), a fact which can be
more naturally demonstrated by using the Clifford algebra-valued coframe
and connection (Mielke et al., 1996a).

6.1. Chiral Supergravity Induced via a Translational
Chern–Simons Term

In order to give the supergravity Lagrangian (44) its chiral form, an
analysis similar to the one given in the previous section should be performed,
focusing on the more fundamental point of view of the generating function
(Mielke et al., 1996a, b).

In our elegant “Clifform” approach, we note that “on shell,” i.e., after
using the Cartan relation (47), the translational Chern–Simons term (39) is
given by

CTT > i
4

C ∧ g ∧ C 5
1
4

J5 (50)

which is proportional to the axial current J5 :5 iC ∧ g ∧ C of the Rarita–
Schwinger field.

Similarly as in the Dirac case, the chiral version of the Rarita–Schwinger
Lagrangian is obtained (Mielke et al., 1996b; Mielke and Macı́as, 1999) by
adding the boundary term dCTT multiplied by the imaginary unit:
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LRS6 :5 1–2 LRS 7 idCTT

5 61–2 (DC ∧ P6g ∧ C 1 C ∧ P7g ∧ DC) (51)

In full, the chiral supergravity theory can be related to simple supergrav-
ity through the identity

Lchiral
Sugra :5 1–2 V

(6)

EC 1 LRS6 5 1–2 (LSugra 7 idCTT) (52)

7. SEIBERG–WITTEN EQUATIONS

The duality of electric and magnetic fields in Maxwell’s theory was
already known to Von Laue (Sommerfeld, 1910). In 1925 the symmetry of
duality rotations was realized by Rainich (1925) and developed further in
geometrodynamics by Misner and Wheeler (1957, 1987). Montonen and Olive
(1978) observed in the context of magnetic monopoles that this generates
also a duality of the strong–weak coupling regime of gauge fields. This so-
called S-duality nowadays plays a predominant role in M-theory (Duff, 1995;
Witten, 1998). These ideas were taken up by Seiberg and Witten (1994)
because they may have important consequences for quark confinement and
the Higgs field (Yung, 1999). From a mathematical perspective, the Donaldson
invariants of four-dimensional manifolds should be calculable in terms of
classical solutions of a system of gauge equations coupled to spinors.

Let us start from the Seiberg–Witten (SW) Lagrangian (Jost et al., 1995),

LSW 5
1
2

D6c ∧ *D6c 7 i1F6 2
1
2

cs6c2
2

5 7i Tr(F6 ∧ F6) 1
1
2

D6c ∧ *D6c

6 ics6c ∧ F6 7
i
4

cs6c ∧ cs6c (53)

where we suppressed the decomposition c 5 cL 1 cR 5 P2c 1 P+c of the
Dirac spinors into the left- and right-handed pieces. The gauge part of the
SW Lagrangian corresponds to the chiral decomposition (24) induced by
u 5 7i.

It can be regarded as a self- or anti-self-dual Yang–Mills Lagrangian
coupled to the convective and polarization Lagrangian resulting from a Gor-
don decomposition of a Dirac field (Hehl et al., 1999). The squared term of
the polarization two-form P :5 (i/2)cs6c, as is typical for a four-fermion
type self-interaction, plays the role of an effective mass term.
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The variation with respect to c and A leads to the convective spinor
equation

D6 *D6c 7 i(F6 2 1–2 cs6c) ∧ s6c 5 0 (54)

coupled to the Yang–Mills-type equation

D61F6 2
1
2

cs6c2 5 7
i
2

c*D6c 5 7
1
2

c*g ∧ *(i*g ∧ D6c) (55)

Solutions (Saçlioglu, 1999) of this system necessarily satisfy the
Seiberg–Witten equations

i*g ∧ D6c 5 0 and F6 5 1–2 cs6c (56)

which linearize the system (54), (55) and, for Euclidean signature, also
minimize the Lagrangian (53). It is interesting to note that the algebraic SW
relation for the gauge field strength F6 resembles the modified (double)
duality Ansatz (Mielke, 1981b, 1984a, b; Baekler et al., 1982; 1986).

V6 5
1

2l2 s6 (57)

used for the RC curvature in the Poincaré gauge theory of gravity. Its solutions
are known (Baekler, 1981; Baekler and Mielke, 1986) to be of the anti-de
Sitter (AdS) type. Today it is advocated to use the effective D 5 11 supergrav-
ity resulting from M-theory after compactification to AdS space (Witten,
1998) as a calculational means (“analog computer”) (Ne’eman, 2000) for the
strong coupling regime of quark confinement in QCD.
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I thank Noelia Méndez Córdova for encouragement.

REFERENCES

Ashtekar, Abhay (1986). New variables for classical and quantum gravity, Physical Review
Letters, 57, 2244.

Ashtekar, Abhay (1988). New Perspectives in Canonical Gravity, Bibliopolis, Naples.
Ashtekar, Abhay (1991). Lectures on Non-perturbative Canonical Gravity, World Scientific,

Singapore.
Atiyah, Michael F. (1984). Yang–Mills equation, in: T. J. Willmore and N. J. Hitchin, Editors,

Global Riemannian Geometry, Ellis Harwood, Chichester, England, pp. 11–17.



186 Mielke

Atiyah, Michael (1998). The Dirac equation and geometry, in: P. Goddard, Editor, Paul Dirac:
The Man and His Work, Cambridge University Press, Cambridge, p. 108.

Atiyah, Michael F., N. J. Hitchin, and I. M. Singer (1978). Self-duality in four-dimensional
Riemannian geometry, Proceedings of the Royal Society of London A, 362, 425.

Baekler, Peter (1981). A spherically symmetric vacuum solution of the quadratic Poincaré
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Hehl, Friedrich W., Wojciech Kopczyński, J. Dermott McCrea, and Eckehard W. Mielke (1991a).
Chern–Simons terms in metric-affine spacetime: Bianchi identities as Euler–Lagrange
equations, Journal of Mathematical Physics, 32, 2169.

Hehl, Friedrich, Jürgen Lemke, and Eckehard W. Mielke (1991b). Two lectures on fermions
and gravity, in: J. Debrus and A. C. Hirshfeld, Editors, Geometry and Theoretical Physics,
Springer, Berlin, p. 56.

Hehl, Friedrich W., J. Dermott McCrea, Eckehard W. Mielke, and Yuval Ne’eman (1995).
Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors,
and breaking of dilation invariance, Physics Reports, 258, 1–171.

Hehl, Friedrich W., Alfredo Macı́as, Eckehard W. Mielke, and Yuri N. Obukhov (1999). On
the structure of the energy-momentum and the spin currents in Dirac’s electron theory,
in: A. Harvey, Editor, On Einstein’s Path—Essays in Honor of Engelbert Schucking,
Springer, New York, pp. 257–274.

Jost, Jürgen, Xiaowei Peng, and Guofang Wang (1995). Variational aspects of the Seiberg–
Witten functional, dg-ga/9504003.

Kaku, Michio (1993). Quantum Field Theory, Oxford University Press, New York.
Kreimer, Dirk, and Eckehard W. Mielke (2000). Comment on: Topological invariants, instantons,

and the chiral anomaly on spaces with torsion, Physical Review D.
Mielke, Eckehard W. (1981a). Gauge-theoretical foundation of color geometrodynamics, in:

Hans D. Doebner, Editor, Differential Geometric Methods in Mathematical Physics,
Springer, Berlin, pp. 135–151.

Mielke, Eckehard W. (1981b). On pseudoparticle solutions in Yang’s theory of gravity, General
Relativity and Gravitation, 13, 175–187.

Mielke, Eckehard W. (1981c). Toward exact solutions of the nonlinear Heisenberg–Pauli–Weyl
spinor equation, Journal of Mathematical Physics, 22, 2034.

Mielke, Eckehard W. (1984a). Reduction of the Poincaré gauge field equations by means of
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gravity. Fortschritte der Physik, 32, 639.

Mielke, Eckehard W. (1987). Geometrodynamics of Gauge Fields—On the Geometry of Yang–
Mills and Gravitational Gauge Theories, Akademie-Verlag, Berlin.

Mielke, Eckehard W. (1990a). Generating function for new variables in general relativity and
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